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ABSTRACT

We provide a general framework for the problem of quantile elicitation, and discuss applica-

tions of the framework in conditional quantile elicitation and multiclass classification. Our

framework provides a rich theory for relating quantile elicitation to the problem of binary

class probability estimation, and results in the development of new scoring rules for quantile

elicitation. In the context of conditional quantile elicitation, we are able to provide regret

bounds which quantify the extent to which our predicted quantiles differ from the actual

quantiles of a distribution. We then turn our attention to multiclass classification, where we

use quantile elicitation techniques to develop what we refer to as approximately consistent

surrogate losses.
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1 Introduction

In the field of property elicitation, the goal is to provide an incentive for an agent to

truthfully report some statistic of a probability distribution that they believe. This problem

has been studied for decades in various forms [21, 29, 32] and is typically solved by using

a proper scoring rule based on the agent’s report and the actual outcome of the chance

experiment; in this thesis we look specifically at the problem of quantile elicitation, in which

we wish to obtain an agent’s report of a specific quantile of their distribution. Recently, there

have been several advances in characterizing solutions to the problem of quantile elicitation

[30, 6, 31, 19], and in this thesis, we provide a unifying framework for the elicitation of

quantiles.

In constructing our unified framework for the elicitation of quantiles, we draw from the field

of machine learning, and define a proper scoring rule inspired by the loss functions used by

Pedregosa et al [23] and Langford et al [19]. As a result, we are able to create a general

scoring rule for quantile elicitation, which we refer to as the infinite threshold scoring rule.

We then discuss two major applications of quantile elicitation. One application in condi-

tional quantile elicitation, and the other in multiclass classification. Conditional quantile

elicitation, in which given a set of features one is asked to predict the quantile of the

distribution of labels, is a well studied problem in several fields including econometrics,

sociology, and ecology [28, 16, 15, 13]. For such applications, the use of conditional quantile

elicitation (for example, estimating the conditional median) is preferred to estimation of the

conditional mean because quantiles are much more robust to noise than mean estimates.

A common example of where this is useful is in wallet estimation, in which one wishes to

estimate the amount of money a consumer is willing to spend on a product; because income

distributions often have outliers, knowing the quantiles of the conditional distribution of

disposable income is a much more valuable statistic [28].

Our second application of quantile elicitation is in machine learning, and specifically in the
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supervised learning problem of multiclass classification. In recent years, the machine learn-

ing community has used surrogate loss minimization as a framework with which to perform

supervised learning. Much of this work has been focused on creating calibrated convex

surrogates for multiclass learning problems, such as 0-1 classification, subset ranking, and

structured prediction [1, 14, 25, 26, 33, 34]. However, creating algorithms based on convex

surrogate losses that can be implemented efficiently is not always practical, especially in

the case where the number of classes is very large [25]. This setting appears, for example,

in image classification. Several prior works have addressed the problem of extreme multi-

class classification [5, 14], but none have used quantile estimation as a key component to

multiclass classification. We find that we can effectively use conditional quantiles to help

perform multiclass classification.
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2 Background and Review of Literature

2.1 Property Elicitation and Proper Scoring Rules

We begin with a discussion of property elicitation, as initially described in [21, 29], and

further studied in [11, 1, 18, 17, 32]. Suppose we have some random variable Y , drawn from

a set of values Y ⊆ R, where Y is drawn according to p with cumulative distribution function

Fp(y) = P(Y ≤ y). Denoting P to be the set of all possible probability distributions over

Y, we may then define a property of a distribution:

Definition 1 (Property of a Distribution). A property Γ : P → C of a distribution is a

function that maps a distribution function p ∈ P to an element c ∈ C for some set C.

Example 1. If C = R, then Γ(p) =
∫∞
−∞ ydFp(y) is a property of the distribution p,

commonly known as the mean.

Example 2. If Y = {0, 1}, then the distribution p places mass on the value 1 with some

probability η, and mass on the value 0 with probability 1 − η. Hence, if C = [0, 1], the

function Γ(p) = η is a property that fully describes the randomness of Y .

In essence, properties are ‘statistics’ of a distribution. The problem setting that we consider

is that of obtaining such a statistic from an agent who knows the distribution of Y – Property

elicitation is also commonly used in other settings, but considering this setting helps us to

motivate our key results. To solve this problem, we make use of scoring rules.

Consider a setting in which an agent has the probability distribution p of a random variable

Y drawn from a set of values Y ⊆ R, and we wish to incentivize the agent to truthfully

report Γ(p) for some property Γ as defined above. In this setting, we receive two values:

the agent’s reported statistic τ , and the outcome of the chance experiment y, i.e. the value

that the random variable Y takes.

Once we receive these two values, we “charge” the agent some amount, so that the agent’s
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goal then becomes to minimize the expected amount that they are charged.1 Formally, we

have the following definition:

Definition 2 (Scoring Rule). A scoring rule is a function ψ : Y × C→R which assigns a

score given both the agent’s reported value and the outcome that the random variable takes

on.

In general, to incentivize the agent, we wish for the scoring rule to be proper:

Definition 3 (Proper Scoring Rule). A scoring rule ψ : Y × C→R is proper if

EY∼p[ψ(Y, τ)] ≥ EY∼p[ψ(Y,Γ(p))],

for all τ ∈ C.

ψ is said to be a strictly proper scoring rule if it is uniquely minimized at Γ(p), i.e.

EY∼p[ψ(Y, τ)] > EY∼p[ψ(Y,Γ(p))],

for all τ 6= Γ(p).

In general, we wish to provide a strictly proper scoring rule to incentivize an agent to be

truthful. For example, a constant scoring rule trivially satisfies being proper, but does not

explicitly incentivize an agent to be truthful.

2.1.1 A Detailed Example: Bernoulli Random Variables

In this section, we go into detail about a particular setting for proper scoring rules that

will prove to be useful for understanding the generalized proper scoring rule of Section 3.

In particular, we consider a setting in which Y = {0, 1}, so that p places mass on 1 with

probability η and mass on 0 with probability 1− η, as in Example 2.

1It is also common to define the scoring rule as giving the agent some “payout,” where the agent’s goal
is to maximize their payout. Here, we take a “loss” perspective as this will relate to our applications more
naturally.
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First, consider the case where we wish to determine the value of the property Γ(p) = η. We

refer to this elicitation problem as the binary class probability estimate problem. Before we

proceed with a sufficient condition for a scoring rule which elicits the binary class probability

estimate, we review some definitions of convexity [3]:

Definition 4 (Convex Set). A set C ⊆ Rd is convex if, for all a, b ∈ C, and for any θ ∈ [0, 1],

we have:

θa+ (1− θ)b ∈ C

Definition 5 (Convex Function). A function φ : C ×R is convex if C is convex, and for any

a, b ∈ C, and θ ∈ (0, 1), φ satisfies:

φ (θa+ (1− θ)b) ≤ θφ(a) + (1− θ)φ(b)

φ is strictly convex if the inequality is strict for all θ ∈ (0, 1).

If φ is differentiable, convexity can equivalently be written:

φ(a) ≥ φ(b) +∇φ(a)>(b− a),

for all a, b ∈ C, where φ is again strictly convex if the inequality is strict for all a, b.

McCarthy [21] showed the following regarding scoring rules for binary class probability

estimation using convex functions:

Lemma 1 (Sufficient Condition for Binary Class Probability Scoring Rule). Let φ : [0, 1]×R

be a convex, differentiable function. Then, the function ψ : {0, 1} × [0, 1]× R, defined as:

ψ(y, η̂) = −
(
1(y = 0)

(
φ(η̂)− η̂φ′(η̂)

)
+ 1(y = 1)

(
φ(η̂) + (1− η̂)φ′(η̂)

) )
,

is a proper scoring rule for Γ(p) = η. If φ is strictly convex, then ψ is a strictly proper

scoring rule for Γ(p) = η.
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Proof. We show the proof by noting considering the two terms

EY∼p[ψ(Y, η̂)] and EY∼p[ψ(Y, η)].

In particular, using the above definition for ψ, we have:

EY∼p[ψ(Y, η̂)] = −
(

(1− η)
(
φ(η̂)− η̂φ′(η̂)

)
+ η

(
φ(η̂) + (1− η̂)φ′(η̂)

) )
= −

(
φ(η̂)− (1− η)η̂φ′(η̂) + η(1− η̂)φ′(η̂)

)
= −

(
φ(η̂) + (η − η̂)φ′(η̂)

)
EY∼p[ψ(Y, η)] = −

(
(1− η)

(
φ(η)− η̂φ′(η)

)
+ η

(
φ(η) + (1− η)φ′(η)

) )
= −φ(η)

Since φ is convex and differentiable, we have EY∼p[ψ(Y, η̂)] ≥ EY∼p[ψ(Y, η)], showing

the claim. If φ is strictly convex, the inequality becomes strict for η̂ 6= η, showing strict

properness as desired.

Example 3 (Shannon Entropy). Consider the case where φ(η̂) = η̂ log η̂+(1− η̂) log(1− η̂),

in other words we consider the negative of the binary Shannon entropy of η̂. Then,

ψ(y, η̂) = −1(y = 0) log(1− η̂)− 1(y = 1) log(η̂),

which then implies

EY∼p[ψ(Y, η̂)]−EY∼p[ψ(Y, η)] = −(1− η) log(1− η̂)− η log(η̂)

− (−(1− η) log(1− η)− η log(η))

= (1− η) log

(
1− η
1− η̂

)
+ η log

(
η

η̂

)
.

This is the binary KL divergence, known to be non-negative and only be equal to 0 if η = η̂.

Hence, the function ψ(y, η̂) = −1(y = 0) log(1 − η̂) − 1(y = 1) log(η̂) is a strictly proper
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scoring rule.

In fact, the result above can be generalized to a broader class of scoring rules known as

proper composite scoring rules. To understand this generalization, we first define indirect

elicitation, which we will see again in Section 3.1.1.

Definition 6 (Indirect Elicitation). Consider a function ψ : Y × H → R and another

function pred : H → C. We say the pair (ψ,pred) indirectly elicits a property Γ : P → C if,

for arbitrary p ∈ P:

∀u∗ ∈ argminu∈HEY∼p[ψ(Y, u)], pred(u∗) = Γ(p)

In the setting of indirect elicitation, one could imagine charging the agent depending on

their response u ∈ H, and then using pred as a transformation to obtain Γ(p) from the

agent’s response u.

Reid and Williamson [27] showed the following regarding indirect elicitation of a binary

class probability in the context of binary classification. Here, we show their results in the

context of property elicitation, with a significantly altered proof:

Proposition 1. Let φ : R → R be a convex, differentiable function. Define γ : [0, 1] → R

by its inverse:2

γ−1(v) =
φ′(−v)

φ′(−v) + φ′(v)
,

and define the scoring rule:

ψ(y, v) = 1(y = 0)φ(−v) + 1(y = 1)φ(v).

Then, (ψ, γ−1) indirectly elicits the property Γ(p) = η.

2The use of the inverse here is a matter of convention, as the authors call such a function an inverse link
function.
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Proof. Consider the set:

argminu∈REY∼p[ψ(Y, u)] = argminu∈R ((1− η)φ(−u) + ηφ(u))

=
{
u
∣∣ − (1− η)φ′(−u) + ηφ′(u) = 0

}
=

{
u
∣∣ φ′(u)

φ′(−u)
=

1− η
η

}
.

Then, for all u∗ ∈ argminu∈REY∼p[ψ(Y, u)], it must be the case:

γ−1(u∗) =
φ′(−u∗)

φ′(−u∗) + φ′(u∗)

=
1

1 + φ′(u∗)
φ′(−u∗)

=
1

1 + 1−η
η

= η.

Hence, (ψ, γ−1) indirectly elicits Γ(p) = η.

Example 4. Let φ(v) = e−v, so that:

γ−1(v) =
1

1 + e−2v
.

Then, we have:

argminu∈REY∼p[ψ(Y, u)] = argminu∈R
(
(1− η)eu + ηe−u

)
=
{
u
∣∣ (1− η)eu − ηe−u = 0

}
=

{
1

2
ln

(
η

1− η

)}
.

Hence, the only u∗ is 1
2 ln

(
η

1−η

)
, and:

γ−1(u∗) =
1

1 + e
− ln

(
η

1−η

) =
1
1
η

= η,
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implying that the pair (ψ, γ−1) indirectly elicits Γ(p) = η for φ = e−u.

Now, we turn our attention to the property Γ(p) = sign
(
η − 1

2

)
, which takes value 1 if

η > 1
2 , and −1 otherwise. The reader with a background in statistical learning theory will

associate this with the Bayes optimal classifier in a binary classification setting.

Again in the setting of binary classification, Bartlett et al [2] showed a result of the following

form for the indirect elicitation of Γ(p) = sign
(
η − 1

2

)
:

Theorem 1 (Bartlett et al [2]). Suppose φ : R→ R is a convex function. Then,

ψ(y, v) = 1(y = 0)φ(−v) + 1(y = 1)φ(v)

indirectly elicits Γ(p) if and only if φ is differentiable at 0 and φ′(0) < 0.

2.2 Quantile Elicitation

In this section, we study specifically proper scoring rules for the elicitation of quantiles of

the distribution of a random variable.

2.2.1 Formal Definition of Quantiles

Let us again consider a setting in which we have a random variable Y , drawn from p, which

has distribution function Fp = P(Y ≤ y). Further, define the complementary cumulative

distribution function Gp = P(Y ≥ y). For α ∈ (0, 1), the α-quantile of p, denoted Qα :

P → I, where I is the set of closed intervals, is then defined as:

Qα(p) = {t | Fp(t) ≥ α and Gp(t) ≥ 1− α}.

We note the following property about Qα, as mentioned by Schervish et al [30]:

Lemma 2 (Quantiles are Closed Intervals). For all p, Qα(p) is a closed interval.
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Proof. Consider the set A = {t | Fp(t) ≥ α}, and the set B = {t | Gp(t) ≥ 1 − α}.

Consider s = inf A, which we know is finite because α > 0. We must have Fp(t) ≤ Fp(s)

for all t ∈ A, by monotonicity. Suppose towards contradiction that Fp(s) < α, so that

Fp(s) = α− ε for some ε > 0. By right continuity of Fp, we see that there exists s+ δ such

that Fp(s+ δ) = α− ε/2 < α, contradicting the definition of s. Hence, A = [s,∞).

Similarly, because Gp(t) is left-continuous in t, we see that B = (−∞, v] for v = supB.

Moreover, v > s, because all x < s is in B, and all x > v is in A, again by monotonicity of

probability measure. Hence, Qα(p) = A ∩B = [s, v], a closed interval.

From the definition above, we see that Qα is a property of p, and in the following sections

we wish to develop proper scoring rules for Qα.

2.2.2 Order Sensitive Scoring Rules

One subtype of scoring rules that has been studied in the context of quantile elicitation is

that of order sensitive scoring rules [4, 32, 31]. Mathematically, we define an order sensitive

scoring rule as follows:

Definition 7. Suppose ψ : Y × R → R elicits a property Γ(p) ∈ R. A scoring rule

ψ : Y × R → R is order sensitive with respect to p for Γ if, for t1, t2 ∈ R such that

t2 < t1 ≤ Γ(p), or Γ(p) ≤ t1 < t2, we have

EY∼p[ψ(Y, t2)] > EY∼p[ψ(Y, t1)].

This definition applies to quantile elicitation if we assume that the α-quantile of p is unique,

i.e. Qα(p) = {q} for a single point q ∈ R. Much of the literature in quantile elicitation,

makes this assumption for their theoretical results, but it is often easy to extend the results

to interval valued quantiles.

In the next section, we will assume, as done in the literature, that quantiles are singletons,
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such that the property is defined as a function Qα : P → R. In Section 3, we will extend

our results to have two notions of quantile elicitation, which we differentiate as weak and

strong quantile elicitation.

2.2.3 Characterizations of Proper Scoring Rules for Quantiles

In this section, we describe two known characterizations of proper scoring rules for quantiles

[30, 32]. In both characterizations, we assume that the quantile Qα(p) is a unique value as

opposed to an interval with non-zero Lebesgue measure, so we discuss the characterizations

of scoring rules which elicit the property qα ∈ R, where qα is the only point which satisfies

both Fp(qα) ≥ α and Gp(qα) ≥ 1− α.

We discuss two characterizations of proper scoring rules for quantiles: That of order-

sensitive proper scoring rules, and of all proper scoring rules for quantiles. Steinwart et

al [32] presented the following characterization of proper scoring rules for quantiles which

are order sensitive:

Theorem 2 (Steinwart et al [32]). Let P0 be the set of distributions on Y such that Y has

finite mean, and consider p ∈ P0. Then, ψ : Y × R → R is a proper scoring rule for the

α-quantile if and only if ψ satisfies:

ψ(y, q) = 1(y < q)(1− α)[g(q)− g(y)] + 1(y > q)α[g(y)− g(q)] + κ(y),

where g is a monotonically increasing function that is finite for all almost all Y under

p, and κ is an arbitrary function in y which is also finite for almost all Y under p.

Schervish et al [30] showed the following more general characterization of proper scoring

rules for quantiles:

Theorem 3 (Schervish et al [30]). Let P0 be the set of distributions on Y such that Y has

finite mean, and consider p ∈ P0. Then, ψ : Y × R → R is a (strictly) proper scoring rule
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for the α-quantile if and only if ψ satisfies

ψ(y, q)− ψ(y, t) =



(1− α)[g(q)− g(t)] (y ≤ min{t, q})

g(y)− αg(q)− (1− α)g(t) (q < y < t)

−g(y) + αg(q) + (1− α)g(t) (t < y < q)

α[g(t)− g(q)] (y ≥ max{t, q})

,

where g is a (strictly) monotonically increasing real valued function that is finite for all

almost all Y under p.

We see that the characterization provided by Steinwart et al [32] is a special case of that of

Schervish et al [30], by the following. Let ψ satisfy Theorem 2. Then,

ψ(y, q)− ψ(y, t) = 1(y < q)(1− α)[g(q)− g(y)] + 1(y > q)α[g(y)− g(q)]

− 1(y < t)(1− α)[g(t)− g(y)]− 1(y > t)α[g(y)− g(t)]

=



(1− α)[g(q)− g(t)] (y ≤ min{t, q})

g(y)− αg(q)− (1− α)g(t) (q < y < t)

−g(y) + αg(q) + (1− α)g(t) (t < y < q)

α[g(t)− g(q)] (y ≥ max{t, q})

As desired.

We now show that both of these definitions apply to the α-pinball loss, also known as the

α-check loss, defined as follows:

Definition 8 (α-pinball loss). The α-pinball loss, which we denote ψα : R × R → R, is

defined:

ψα(y, q) = α(y − q)+ + (1− α)(q − y)+

Proposition 2. The α-pinball loss is a proper scoring rule for the α-quantile.
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Proof. This is clear, as it satisfies Theorem 2 with g(x) = x as a monotonically increasing

function.
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3 Generalized Proper Scoring Rules for Quantile Elicitation

In this section, we define notions of elicitation of quantiles that account for the fact that

quantiles are interval valued, and then we go on to describe another characterization of

proper scoring rules for quantile elicitation.

3.1 Weak and Strong Elicitation of Quantiles

3.1.1 Indirect Property Elicitation

Recall the definition of indirect elicitation:

Definition 9 (Indirect Elicitation). Consider a function ψ : Y × H → R and another

function pred : H → C. We say the pair (ψ,pred) indirectly elicits a property Γ : P → C if:

∀u∗ ∈ argminu∈HEY∼p[ψ(Y, u)], pred(u∗) = Γ(p).

In the context of quantile elicitation, we wish to elicit a property in C = I, where I is the

set of closed intervals. In the approach of the general proper scoring rule of Section 3.2, we

define H to be the set of all monotonically increasing functions, and use a transformation

to obtain an interval from a particular increasing function.

Unfortunately, as predicting a closed interval often provides computational difficulties, and

the interval of a quantile occurs with probability 0, it is often preferable to only elicit one

value within a quantile. Hence, we differentiate between weak and strong elicitation of

quantiles.

3.1.2 Weak Quantile Elicitation

In cases in which it suffices to only predict one quantile in the interval, we define the

following notion of a proper scoring rule for a quantile:
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Definition 10 (Weak Indirect Quantile Elicitation). Consider a function ψ : Y × H → R

and another function pred : H → R. We say the pair (ψ,pred) weakly indirectly elicits the

α-quantile Qα : P → I evaluated at the distributionp if:

∀u∗ ∈ argminu∈HEY∼p[ψ(Y, u)], pred(u∗) ∈ Qα(p).

We say that (ψ,pred) strictly weakly indirectly elicits the α-quantile if it is also the case

that:

∀u′ 6∈ argminu∈HEY∼p[ψ(Y, u)], pred(u′) 6∈ Qα(p).

This definition of quantile elicitation coincides with the definition of a proper scoring rule for

a quantile when the quantile is a singleton, as discussed in the previous two characterizations

of proper scoring rules. We can show that the α-pinball loss weakly indirectly elicits the

α-quantile, if we set pred to be the identity3

Proposition 3. Let pred(x) = x, and p be defined over Y such that Y has finite mean.

Then, the pair (ψα,pred), where ψα is defined as in Definition 8, strictly weakly indirectly

elicits the α-quantile of p.

Proof. Consider the definition of EY∼p[ψα(Y, u)]:

EY∼p[ψα(Y, u)] =

∫ ∞
−∞

(α(y − u)+ + (1− α)(u− y)+) dFp(y)

= α

∫ ∞
−∞

∫ y

u
1(u < y)dκdFp(y) + (1− α)

∫ ∞
−∞

∫ u

y
1(u > y)dκdFp(y)

= α

∫ ∞
u

∫ y

u
dκdFp(y) + (1− α)

∫ u

−∞

∫ u

y
dκdFp(y)

= α

∫ ∞
u

∫ ∞
u

dFp(y)dκ+ (1− α)

∫ u

−∞

∫ u

−∞
dFp(y)dκ

= α

∫ ∞
u

Gp(κ)dκ+ (1− α)

∫ u

−∞
Fp(κ)dκ.

3By setting pred to be the identity function, we are also saying that the α-pinball loss in some sense
weakly directly elicits the α-quantile.
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Because we assume Y has finite mean, the integral above must exist as the original expec-

tation must exist. Moreover, we see that if u does not satisfy the definition of a quantile,

then either Fp(u) < α or Gp(u) < 1−α. Consider the case Fp(u) < α. Then, if we consider

q such that q ∈ Qα(p), we have:

EY∼p[ψα(Y, u)]−EY∼p[ψα(Y, q)] = α

∫ ∞
u

Gp(κ)dκ+ (1− α)

∫ u

−∞
Fp(κ)dκ

−
(
α

∫ ∞
q

Gp(κ)dκ+ (1− α)

∫ q

−∞
Fp(κ)dκ

)
= α

∫ q

u
Gp(κ)dκ− (1− α)

∫ q

u
Fp(κ)dκ

> 0.

The final inequality holds because, when we assume Fp(κ) < α, this implies G(κ) ≥ 1− α,

and this must be true for all u ≤ κ ≤ qα ≤ q, where qα is the smallest element of Qα(p).

Because u < qα, as we assumed u does not satisfy the definition of a quantile, it must be the

case that the difference EY∼p[ψα(Y, u)]−EY∼p[ψα(Y, q)] is strictly positive as desired.

3.1.3 Strong Quantile Elicitation

We now present a stronger notion of quantile elicitation, in which we ask that the scoring

rule and prediction function elicit the entire interval of the quantile. Formally, the definition

is as follows:

Definition 11 (Strong Indirect Quantile Elicitation). Consider a function ψ : Y ×H → R

and another function pred : H → I. We say the pair (ψ,pred) strongly indirectly elicits the

α-quantile Qα : P → I evaluated at the distribution p if:

∀u∗ ∈ argminu∈HEY∼p[ψ(Y, u)], pred(u∗) = Qα(p),

We say that (ψ,pred) strictly strongly indirectly elicits the α-quantile if it is also the case
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that:

∀u′ 6∈ argminu∈HEY∼p[ψ(Y, u)], pred(u′) 6= Qα(p).

Remark. Strong indirect quantile elicitation is the same as indirect elicitation of quantiles

if we consider quantiles as interval-valued, as they are formally defined.

3.2 General Framework for Quantile Elicitation

We now present a general scoring rule that, depending on the choice of pred function, can

either weakly or strongly elicit the α-quantile of F . We call this scoring rule the infinite

threshold scoring rule, and denote it ψφ,α : Y ×G → R, where G is the set of non-decreasing

real-valued functions.

Definition 12 (Infinite Threshold Scoring Rule). For a function φ : R → R, the infinite

threshold scoring rule is defined:

ψφ,α(y, g) = α

∫ y

t=−∞
φ(−g(t))dt+ (1− α)

∫ ∞
t=y

φ(g(t))dt. (1)

Our scoring rule elicits a function g from the agent, and because g is monotonically increas-

ing, it must have a countable number of discontinuities. Hence, we see that ψφ,α will be

well defined for any choice of g ∈ G if the integral is taken as a Lebesgue integral.

This scoring rule is interesting in that its expectation under F can be written as a pointwise

function of t, which allows us to easily solve for the optimal function g in terms of the

cumulative distribution function. We refer to this as the decomposability property. First,
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note:

EY∼p[ψφ,α(Y, g)] =

∫ ∞
y=−∞

ψφ,α(y, g)dFp(y)

=

∫ ∞
y=−∞

(
α

∫ y

t=−∞
φ(−g(t))dt+ (1− α)

∫ ∞
t=y

φ(g(t))dt

)
dFp(y)

=

∫ ∞
t=−∞

α(1− Fp(t))φ(−g(t)) + (1− α)Fp(t)φ(g(t))dt.

Then, by defining

Cα(β, q) = α(1− q)φ(−β) + (1− α)qφ(β) .

we may write

EY∼p[ψφ,α(Y, g)] =

∫ ∞
t=−∞

Cα(g(t), Fp(t))dt .

Now, note that Cα also corresponds to the expected score of a binary margin scoring rule.

Hence, by point wise minimization of Cα, we are able to solve for g(t) in terms of Fp. We

note this idea in the following lemma, which shows that there exists a g∗ which is in fact

monotonically increasing.

Lemma 3. Suppose φ is continuous, and (1 − α)φ(β) − αφ(−β) is non-increasing. Let

C∗α(q) = infβ Cα(β, q). Then,

min
g

EY∼p[ψ(Y, g)] =

∫ ∞
t=−∞

C∗α(Fp(t))dt .

Proof. Consider the function g∗(t) = sup argminβCα(β, Fp(t)). By construction, we have

g∗(t) ∈ argminhEY∼p[ψφ,α(Y, h)] where h is considered over all possible functions of the

real line.

We claim g∗ is in fact monotonically increasing. Consider two points t1 < t2. Then, we

know Fp(t1) ≤ Fp(t2). Consider the function Cα(β, q) = α(1− q)φ(−β) + (1− α)qφ(β).

Since φ is continuous, we know argminβCα(β, q) is a closed interval for all q. There are then
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two cases:

Case 1: Fp(t1) = Fp(t2)

In this case, g(t1) = g(t2), by definition.

Case 2: Fp(t1) < Fp(t2)

In this case, consider i = sup argminβCα(β, Fp(t1)) and j = sup argminβCα(β, Fp(t2)).

Suppose towards contradiction that i > j. By definition of argmin, we have the

following two inequalities:

• Cα(i, Fp(t1)) ≤ Cα(j, Fp(t1))

• Cα(j, Fp(t2)) ≤ Cα(i, Fp(t2))

Let us write Fp(t2) = Fp(t1) + ε for some ε > 0. We then see:

Cα(i, Fp(t2)) = α(1− Fp(t2))φ(−i) + (1− α)Fp(t2)φ(i)

= α(1− Fp(t1))φ(−i) + (1− α)Fp(t1)φ(i) + ε(αφ(−i)− (1− α)φ(i))

= Cα(i, Fp(t1)) + ε(αφ(−i)− (1− α)φ(i))

≤ Cα(j, Fp(t1)) + ε(αφ(−j)− (1− α)φ(j))

= Cα(j, Fp(t2)) .

If the inequality is strict, this contradicts the optimality of Cα(j, Fp(t2)). Oth-

erwise, we see that Cα(i, Fp(t2)) = Cα(j, Fp(t2)), implying i = j, contradicting

the assumption i > j.

Now, we wish to show that the integral

∫ ∞
t=−∞

Cα(g∗(t), Fp(t))dt
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exists. First, note that g∗(t) has a countable number of discontinuities; each discontinuity

is over an interval, and because rational numbers are dense on the real line, each interval

can be mapped to a rational number which can in turn be mapped to a natural number.

Similarly, Fp(t) may have a countable number of discontinuities.

Moreover, note that φ is convex, and thus unimodal, meaning that it also has a countable

number of discontinuities. Thus, Cα(g∗(t), Fp(t)) may be discontinuous in a countable

number of places, implying that the Lebesgue integral is well defined.

For concreteness, we provide some examples of the infinite threshold scoring rule:

Example 5. If φ(u) = (1 − u)+, commonly known as the hinge loss, then the surrogate

loss becomes:

ψφ,α(y, g) = α

∫ y

t=−∞
(1 + g(t))+dt+ (1− α)

∫ ∞
t=y

(1− g(t))+dt .

In order to minimize the expectation, we find that we get:

g∗(t) = sign(F (t)− α) .

In particular, if we do the minimization over functions of the form gv(t) = sign(t−v), where

the objective is then to simply learn the parameter v, then ψφ,α(y, g) can be rewritten:

ψφ,α(y, gv) = 2α(y − v)+ + 2(1− α)(v − y)+ = 2ψα(y, v) .

That is, our framework has the α-pinball loss as a special case.

Example 6. If φ(u) = e−u, commonly known as the exponential loss, then the surrogate

loss becomes:

ψφ,α(y, g) = α

∫ y

t=−∞
eg(t)dt+ (1− α)

∫ ∞
t=y

e−g(t)dt .
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φ(u) Minimizer g∗(t)

(1− u)+ g∗(t) = sign(Fp(t)− α)

e−u g∗(t) = 1
2 log

(
Fp(t)(1−α)
α(1−Fp(t))

)
ln(1 + e−u) g∗(t) = log

(
Fp(t)(1−α)
α(1−Fp(t))

)
(1− u)2 g∗(t) =

Fp(t)−α
α(1−Fp(t))+(1−α)Fp(t)

Table 1: Examples of g∗(t) for different choices of φ when the minimization is over all
increasing functions g.

In order to minimize the expectation, we find that we get:

g∗(t) =
1

2
log

(
Fp(t)(1− α)

α(1− Fp(t))

)
.

As one example, we could do the minimization over functions of the form gv(t) = t − v,

where the objective is again to simply learn the parameter v. It is important to note here

that the assumption that the optimal g∗ is of a linear form is not reasonable, except for very

specific forms of the CDF, but one can show that for symmetric distributions, this form of

the surrogate can effectively elicit the median of a distribution. In this case, ψφ,α(y, g) can

be rewritten:

ψφ,α(y, gv) = αey−v + (1− α)ev−y

Table 1 provides several examples of optimal g∗ functions for different forms of φ. From this

table, we see that, in all presented examples other than that of the hinge loss, the optimal

g∗(t) is defined by an invertible transform of F (t).

We then have the following two theorems regarding the infinite threshold surrogate, when

combined with different pred functions:

Theorem 4. Let φ : R→R+ be convex, continuous such that (1 − α)φ(β) − αφ(−β) is

non-increasing in β. Define predw : G → R as:

predw(g) = inf{t | g(t) > 0} ,
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and let ψφ,α be defined as in Equation 1. Then, (ψφ,α,predw) strictly weakly indirectly

elicits the α-quantile if φ is differentiable at 0, φ′(0) < 0.

Theorem 5. Let φ : R→R+ be strictly convex and such that (1−α)φ(β)−αφ(−β) is non-

increasing in β, with φ is differentiable everywhere and φ′(0) < 0. Define preds : G → R

as:

preds(g) = {t | g(t) = 0} ∪
{

inf{t | g(t) > 0}
}
∪
{

sup{t | g(t) < 0}
}
,

and let ψφ,α be defined as in Equation 1. Then, (ψφ,α,preds) strictly strongly indirectly

elicits the α-quantile.

3.2.1 Proof of Theorem 4: Weak Elicitation of Quantiles

Consider an arbitrary non-decreasing function g∗ ∈ argmingEY∼p[ψφ,α(Y, g)]. We know by

Lemma 3 that g∗ must satisfy:

EY∼p[ψ(Y, g∗)] =

∫ ∞
t=−∞

C∗α(Fp(t))dt

We also have:

sign
(
argminβ∈RCα(β, Fp(t))

)
= sign

(
argminβα(1− F (t))φ(−β) + (1− α)F (t)φ(β)

)
= sign

(
argminβ

α(1− Fp(t))

α(1− Fp(t)) + Fp(t)(1− α)
φ(−β)

+
Fp(t)(1− α)

α(1− Fp(t)) + Fp(t)(1− α)
φ(β)

)

By Proposition 1, we see that because the scoring rule derived from φ can elicit sign(η−1/2),

the above has β > 0 if and only if
Fp(t)(1−α)

α(1−Fp(t))+Fp(t)(1−α) >
1
2 or equivalently Fp(t) > α. Hence,

sign
(
argminβ∈RCα(β, Fp(t))

)
= sign (Fp(t)− α) (2)

Now, suppose towards contradiction that predQ(g∗) 6∈ Qα(p). We know that Qα(p) is a
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closed interval, i.e. Qα(p) = [qα, q
α] for qα ≤ qα. There are then two cases:

Case 1: predw(g∗) < qα

In this case, we have inf{t | g∗(t) > 0} < qα. Let t∗ = inf{t | g∗(t) > 0}, so

that we may write t∗ + ε = qα for some ε > 0. Then, by definition of infimum,

we know that g
(
t∗ + ε

2

)
> 0. However, by Equation 2, we know this implies

Fp

(
t∗ + ε

2

)
> α.

However, we have Gp(qα) ≥ 1 − α, and that Gp is non-decreasing, so that

Gp

(
t∗ + ε

2

)
≥ Gp(qα) ≥ 1 − α, implying qα is not the true lower bound of

Qα(p), a contradiction.

Case 2: predw(g∗) > qα

In this case, we must have: inf{t | g∗(t) > 0} > qα. Let t∗ = inf{t | g∗(t) > 0},

so that we may write t∗ = qα + ε for some ε > 0. Again, from [30], we know

that if t > qα, then F (t) > α. Hence, we must have Fp

(
qα + ε

2

)
> α, implying

g
(
qα + ε

2

)
> 0 by 2.

However, this contradicts the definition of t∗, as there exists a point qα + ε
2 < t∗

such that g
(
qα + ε

2

)
> 0.

Thus, we must have predw(g∗) ∈ Qα(p), implying that (ψφ,α, predw) indirectly elicits the

α-quantile.

3.2.2 Proof of Theorem 5: Strong Elicitation of Quantiles

Consider an arbitrary non-decreasing function g∗ ∈ argmingEY∼p[ψφ,α(Y, g)]. We know by

Lemma 3 that g∗ must satisfy:

EY∼p[ψ(Y, g∗)] =

∫ ∞
t=−∞

C∗α(Fp(t))dt .
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We now note that, due to the structure of φ, we can in fact explicitly solve for g∗(t).

Consider the following:

argminβCα(β, Fp(t)) = argminβα(1− Fp(t))φ(−β) + (1− α)Fp(t)φ(β)

= argminβ
α(1− Fp(t))

α(1− Fp(t)) + (1− α)Fp(t)
φ(−β)

+
(1− α)Fp(t)

α(1− Fp(t)) + (1− α)Fp(t)
φ(β)

= γ−1

(
(1− α)Fp(t)

α(1− Fp(t)) + (1− α)Fp(t)

)
,

where the final step and definition of γ−1 comes from Proposition 1. Moreover, due to the

symmetry of φ, we see that γ−1(1/2) = 0, and since φ is strictly convex, we have that γ−1

is strictly increasing.

Hence, we have:

g∗(t) = γ−1

(
(1− α)Fp(t)

α(1− Fp(t)) + (1− α)Fp(t)

)
. (3)

Suppose towards contradiction that preds(g
∗) 6= Qα(p). Then, there are two cases:

Case 1: There is t′ ∈ preds(g
∗) such that t′ 6∈ Qα(p).

There are 3 cases for t′: Either g∗(t′) = 0, t′ = sup{t | g∗(t) < 0} , or t′ =

inf{t | g∗(t) > 0}. The first case results in an immediate contradiction, by 3, as

if F (t′) = α, then t′ ∈ Qα(p) by definition.

Otherwise, suppose t′ = sup{t | g∗(t) < 0}. If g∗(t′) > 0, then t = inf{t | g(t) >

0}, and the proof of weak elicitation of quantiles immediately shows that t′ ∈

Qα(p), a contradiction. Otherwise, if g∗(t′) < 0, we may repeat the proof of

weak elicitation of quantiles, but reverse the sign, again showing that t′ ∈ Qα(p),

as desired.

Case 2: There is t′ ∈ Qα(p) such that t′ 6∈ preds(g
∗).
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Consider the value g(t′). It must either be the case g(t′) > 0 or g(t′) < 0.

Without loss of generality, suppose g(t′) > 0. By 3, it must be the case that

Fp(t′) > α. We must also have G(t′) ≥ 1−α, since t′ ∈ Qα(p). This then implies

that F places strictly positive probability on t′, say P(Y = t′) = p . However,

this then implies supQα(p) = t′, so it must be the case that inf{t | g∗(t) > 0}

contains t′, a contradiction.

Therefore, we must have preds(g
∗) = Qα(p), which implies that the pair

(ψφ,α,preds) strongly indirectly elicits the α-quantile of p.
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4 Application to Conditional Quantile Elicitation

In this section, we discuss an application of quantile elicitation to the problem of conditional

quantile elicitation, also known as quantile regression, in which, given some instance features

of a particular sample, one wants to know the α-quantile of the conditional distribution of

the label of that sample.

Conditional quantile elicitation has several applications, including in Econometrics, Soci-

ology, and Ecology. For example, in the econometric problem of wallet estimation, where

one is asked to determine how much a customer is willing to spend on an item, conditional

quantiles are quite useful as they are more robust to heavy-tailed income distributions.

In this section, we reuse much notation to reflect similarities to Section 3. For example ψ is

used as a surrogate loss here, because we will often use proper scoring rules as our surrogate

loss.

4.1 Setting

Formally, we have an instance space X , a label space Y = R, a prediction space Ŷ, and a set

of training examples S = ((X1, Y1), . . . , (Xm, Ym)) drawn from some underlying distribution

D. The task is to learn the conditional quantiles of the distribution P(·|X = x) = px over

Y.

In this setting, the goal is to learn a function hS : X → Ŷ which predicts the α-quantile.

Similar to the setting of property elicitation, in learning a function to estimate quantiles,

the prediction space varies in the literature. Often, it is assumed that Qα(px) consists of

a single point for each x ∈ X , so the function learned is of the form hS : X → R. If

Qα(px) is allowed to have non-zero Lebesgue measure, then the function learned is of the

form hS : X → I. In this sense, we are again able to differentiate between weak and strong

quantile elicitation, as in Section 3.
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Indirect Conditional Quantile Elicitation. Often, and again related to the above

section, we are able to indirectly elicit a conditional property. Rather than directly learning

the function hS : X → Ŷ, we learn a function fS : X → H in some surrogate space H,

and a mapping pred : H → Ŷ. In our context, we will learn fS using a loss minimization

approach.

4.2 Review of Literature

In this section, we describe several results relevant to our framework. The first series of

results provides key insights into how the problem of property elicitation can be used for

conditional property elicitation. This then allows us to apply many of the results in Section

3 to conditional quantile elicitation.

The next series of results shows the existence of regret bounds for conditional quantile

elicitation. We are able to contrast such results with our own regret bounds regarding the

infinite threshold surrogate.

In the final section, we discuss an approach to conditional quantile elicitation that comes

about as a special case of our framework, in which we approximate integrals by sums.

4.2.1 Conditional Property Elicitation

In this section, we provide some results that show that the use of a proper scoring rule

can result in conditional property elicitation. We begin with the following definitions and

results, from [1].

Definition 13 ((`,P ′)-Calibrated Surrogate Loss). Consider a loss function ` : Y×Ŷ → R+,

a surrogate loss ψ : Y × H → R+, and a mapping pred : H → Ŷ. Let Opt(`,p) =

argmin
ŷ∈ŶEY∼p[`(Y, ŷ)]. Then, given a set of probability distributions P ′ ⊆ P, we say
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(ψ,pred) is (`,P ′)-calibrated with respect to ` if:

∀p ∈ P ′, inf
u∈H:pred(u)6∈Opt(`,p)

EY∼p[ψ(Y,u)] > min
u∈H

EY∼p[ψ(Y,u)] .

Moreover, define the following quantities to denote generalization error and Bayes error :

Definition 14 (Generalization Error). For a loss ` : Y × Ŷ → R+, the generalization error

of a function h : X → Y with respect to a distribution D on X × Y is defined:

er`D[h] = E(X,Y )∼D[`(Y, h(X))] .

Definition 15 (Bayes Error). For a loss ` : Y × Ŷ → R+, the Bayes error of with respect

to a distribution D on X × Y is defined:

er`,∗D = inf
h:X→Y

E(X,Y )∼D[`(Y, h(X))] .

It is typically assumed that the Bayes error is achievable by some function h∗.

We also have the following theorem by Zhang [34] shows the usefulness of algorithms that

use (`,P ′) calibrated surrogate losses:

Theorem 6 (Surrogate Loss Minimization, Zhang [34]). Consider a loss function ` : Y ×

Ŷ → R+, a surrogate loss ψ : Y × H → R+, and a mapping pred : H → Ŷ. Then

(ψ,pred) is (`,P ′)-calibrated if and only if, for distributions D on X × Y such that, given

any x ∈ X the conditional distribution of Y is in P ′, and all sequences fm from training

sets ((X1, Y1), . . . , (Xm, Ym)) drawn i.i.d. from such distributions D, we have:

erψD[fm]→P erψ,∗D =⇒ er`D[pred ◦ fm]→P er`,∗D .

Now, we define a similar notion of calibration for a property with respect to a loss `:
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Definition 16 ((`,P ′)-Calibrated Property). Consider a loss function ` : Y × Ŷ → R+,

a property Γ : P → H, and a mapping pred : H → Ŷ. Then, given a set of probability

distributions P ′ ⊆ P, we say (Γ,pred) is (`,P ′)-calibrated, if, for a sequence {vn}:

∀p ∈ P ′, vn → Γ(p) =⇒ EY∼p[`(Y,pred(vn))]→ min
u∈H

EY∼p[ψ(Y,u)] .

Agarwal and Agarwal [1] then showed the following result, relating calibrated properties to

calibrated surrogates. In their proof, they considered a discrete prediction space, so here we

have adjusted the proof to allow for a continuous prediction space, so long as the prediction

with lowest expected loss has strictly lower loss than any other prediction.

Theorem 7 (Calibrated Surrogates from Calibrated Properties, Agarwal and Agarwal [1]).

Consider discrete spaces Y and Ŷ. Let ` : Y × Ŷ → R+ and P ′ ⊆ P. Let Γ : P → H, and

pred : H → Ŷ, such that (Γ,pred) is (`,P ′)-calibrated. Further, let ψ : Y × H → R+ be a

strictly proper scoring rule for Γ. Then, the pair (ψ,pred) is (`,P ′)-calibrated.

4.2.2 Minimization of the α-Pinball Loss

The α-pinball loss has been studied widely in quantile regression, for example in [15, 32].

Here, we describe in detail the results of [31], in which surrogate regret bounds are provided

for the α-pinball loss in quantile regression.

To understand the results of [31], we must go into detail about specific types of quantiles:

Definition 17 (Quantiles of type q). Consider a distribution p with support on [−1, 1],

and label the α-quantile Qα(p) = [qα, q
α]. p is said to have an α-quantile of type q ∈ [1,∞)

if there exist constants ap ∈ (0, 2] and bp > 0 such that:

PY∼p(qα ≤ Y ≤ qα + s) ≥ bpsq−1 , and

PY∼p(qα − s ≤ Y ≤ qα) ≥ bpsq−1 ,
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for all s ∈ [0, ap).

In essence, this definition quantifies how the probability distribution is spread around the

α-quantile.

Moreover, since we are looking at conditional quantile elicitation, to account for the joint

distribution we may define α-quantiles of p-average type, as follows.

Definition 18 (Quantiles of p-average type q). Let p ∈ (0,∞), and q ∈ [1,∞), and let D be

a distribution on X ×R. We say D has an α-quantile of p-average type q if px = P(·|X = x)

has an α-quantile of type q for almost all X under DX , the marginal density of X under

D, and the function:

τ(x) = bpxa
q−1
px

With bpx and apx defined as in Definition 17, is such that τ−1 is in the set Lp(DX).

In this context, Steinwart [31] studied what we would call weak conditional quantile elici-

tation, in which the goal was to elicit any point in the α-quantile of the conditional distri-

bution. Hence, they defined a notion of distance to a set:

Definition 19 (Distance to a Set). The distance between a point t ∈ R and a set A ⊆ R

is defined:

dist(t, A) = inf
s∈A
|t− s|

Remark. The distance between a quantile and a point can be defined using a minimum

rather than an infimum, because quantiles are closed intervals.

We may now state the regret bound shown in [31], which relates the value of the pinball

loss to the distance between an algorithms output and the true quantiles:

Theorem 8 (Regret Bound for Pinball Loss, Steinwart [31]). Let ψα be the α-pinball loss,

and p ∈ (0,∞) and q ∈ [1,∞). Further, let r = pq
p+1 . Let D have an α-quantile of p-average
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type q. Then, for all f : X → [−1, 1], it is verified that:

||dist(f,Qα)||Lr(DX) ≤ 21−1/qq1/q||τ−1||Lp(DX)

(
erψαD [f ]− erψα,∗D

)1/q
.

4.2.3 Reduction Approaches to Conditional Quantile Elicitation

In terms of algorithmic approaches to quantile elicitation, Langford et al [19] showed that

conditional quantile elicitation could be approached by using a reduction to binary classifi-

cation. In particular, they provided the following algorithm, Quanting-Train to learn a

model to predict quantiles:

Algorithm 1 Quanting-Train (Weighted binary classification algorithm A, training sample
S, quantile α)

1: for t ∈ [0, 1] do
2: St = {}
3: for each (x, y) ∈ S do
4: St = St ∪ {x,1(y ≥ t), α1(y ≥ t) + (1− α)1(y < t)}
5: ct = A(St)

6: Return set of all ct

Here, it is assumed that the support of the conditional distribution of the label is always

on [0, 1]. In practice, one is unable to iterate through all t ∈ [0, 1], so typically one iterates

through the values {0, 1/n, . . . , (n− 1)/n, 1} for some suitably large n.

To evaluate the quantile given the binary classifiers, Langford et al uses the following algo-

rithm:

Algorithm 2 Quanting-Train (Set of classifiers {ct}, test set S′)

1: for each x ∈ S′ do
2: Q(x) = Et∼U(0,1)[ct(x)]

In practice, one would approximate this expectation with a sum.

Langford et al showed strong experimental evidence showing that this approach to condi-
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tional quantile elicitaition, when n is large, has better minimization of the α-pinball loss

than more common methods such as linear quantile regression. This can be attributed to

the different function class that is used by Langford et al, as they do not restrict their final

classifier to be a linear function of the instance space.

4.3 Theoretical Results

In this subsection, we show two results regarding the infinite threshold scoring rule in the

context of conditional quantile elicitation. Then, in the next subsection, we provide an

analysis of the Langford algorithm under our framework.

We first show that using the infinite threshold scoring rule as a loss function will elicit the

conditional quantiles of a distribution:4

Theorem 9 (Calibration of Infinite Thresholds). Consider a training set ((X1, Y1), . . . , (Xm, Ym))

drawn i.i.d. from a distribution D. Then, we have the following implication, where fm is

the function (which maps instances of X to monotonically increasing functions) learned by

minimizing ψφ,α over the sample of size m:

er
ψφ,α
D [fm]→P erψ,∗D =⇒ E(X,Y )∼D[dist(predw(fm(X)), Qα(pX))]→P 0 .

Here, predw is defined as in Theorem 4.

Proof. This result follows immediately from Theorem 4. We may consider the quantity:

er
ψφ,α
D [fm] = EX

[
EY |X [ψφ,α(Y, fm(X))]

]
.

Because ψφ,α weakly indirectly elicits Qα(px), where px is the conditional distribution of

Y given x, we see that er
ψφ,α
D [fm]→P erψ,∗D implies that EY |X [ψφ,α(Y, fm(X))] is minimized

for almost all X under DX . Hence, by Theorem 4, it must be the case that, in probability,

4Here, we assume that the function class over which the minimization occurs is suitably large.
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predw(fm(X)) ∈ Qα(pX) for almost all X under DX , implying

E(X,Y )∼D[dist(predw(gm(X)), Qα(pX))]→P 0 ,

by the definition of distance, as desired.

In particular, for median estimation we can also show a regret bound for the infinite thresh-

old surrogate, using techniques similar to Pedregosa et al [23], and combining this with the

result shown by Steinwart et al [31]:

Theorem 10 (Regret Bound for Infinite Thresholds). Let ψφ,1/2 be the infinite threshold

scoring rule as defined in Definition 1 with φ differentiable at 0, with φ′(0) < 0 and φ(β)−

φ(−β) increasing in β, and let p ∈ (0,∞) and q ∈ [1,∞). Further, let r = pq
p+1 . Let D have

a median (1/2-quantile) of p-average type q. Then, for all f : X → G where G is the set of

increasing functions, it is verified that:

||dist(predw ◦ f,Q1/2)||Lr(DX) ≤ 21−1/qq1/q||τ−1||Lp(DX)ξ
(

er
ψφ,1/2
D [f ]− er

ψφ,1/2,∗
D

)1/q
,

for a function ξ which is defined by φ.

Proof. For a particular x ∈ X , let f(x) = g, a monotonically increasing function, and let

px be the conditional distribution of Y given that X = x. Moreover, define u = predw(g).

33



Then, we first note the following for the α-pinball loss ψα:

EY∼px [ψα(Y, u)] =

∫ ∞
−∞

(α(y − u)+ + (1− α)(u− y)+) dFpx(y)

= α

∫ ∞
−∞

∫ y

u
1(u < y)dκdFpx(y) + (1− α)

∫ ∞
−∞

∫ u

y
1(u > y)dκdFpx(y)

= α

∫ ∞
u

∫ y

u
dκdFpx(y) + (1− α)

∫ u

−∞

∫ u

y
dκdFpx(y)

= α

∫ ∞
u

∫ ∞
u

dFpx(y)dκ+ (1− α)

∫ u

−∞

∫ u

−∞
dFpx(y)dκ

= α

∫ ∞
u

Gpx(κ)dκ+ (1− α)

∫ u

−∞
Fpx(κ)dκ .

There are then 3 cases for u, as compared to an arbitrary q ∈ Qα(px), where we denote

Qα(px) = [qα, q
α].

Case 1: u ∈ Qα(px)

In this case, EY∼px [ψα(Y, u)] = EY∼px [ψα(Y, q)], by Proposition 3.

Case 2: u < qα.

In this case, we may write:

EY∼px [ψα(Y, u)]−EY∼px [ψα(Y, q)] = α

∫ ∞
u

Gpx(κ)dκ+ (1− α)

∫ u

−∞
Fpx(κ)dκ

−
(
α

∫ ∞
q

Gpx(κ)dκ+ (1− α)

∫ q

−∞
Fpx(κ)dκ

)
= α

∫ q

u
Gpx(κ)dκ− (1− α)

∫ q

u
Fpx(κ)dκ .

In the case of the median, this becomes:

EY∼px [ψα(Y, u)]−EY∼px [ψα(Y, q)] =
1

2

∫ q

u
(Gpx(κ)− Fpx(κ))dκ .

Case 3: u > qα.
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Similar to the above, in the case of the median we have:

EY∼px [ψα(Y, u)]−EY∼px [ψα(Y, q)] =
1

2

∫ u

q
(Fpx(κ)−Gpx(κ))dκ .

In any case, we may bound:

EY∼px [ψα(Y, u)]−EY∼px [ψα(Y, q)] ≤ 1

2

∫ u

q
|Fpx(κ)−Gpx(κ)|dκ .

We define the ξ-transform of φ as was done in Bartlett et al [2] as follows:5

ξ(θ) = φ(0)− 2C∗1/2

(
1 + θ

2

)
.

Hence, because we assume Y has support [−1, 1], we may then bound:

ξ (EY∼px [ψα(Y, u)]−EY∼px [ψα(Y, q)]) ≤ ξ
(

1

2

∫ u

q
|Fpx(κ)−Gpx(κ)|dκ

)
≤ 1

2

∫ u

q
ξ (|Fpx(κ)−Gpx(κ)|) dκ (Jensen’s Inequality)

=
1

2

∫ u

q
ξ (Fpx(κ)−Gpx(κ)) dκ (Symmetry6)

≤ 1

2

∫ u

q
ξ (2Fpx(κ)− 1) dκ

=
1

2

∫ u

q
(φ(0)− 2C∗1/2(Fpx(κ))dκ .

5In Bartlett et l [2], this is referred to as the ψ-transform, but here we use ψ to represent scoring rules
so we use the notation ξ instead.
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We note that, if κ 6∈ Q1/2(px), then φ(0) ≤ 2C1/2(g(κ), Fpx(κ)). This is clear, as:

2C1/2(g(κ), Fpx(κ)) = Fpxφ(g(κ)) + (1− Fpx)φ(−g(κ))

≥ φ(Fpxg(κ)− (1− Fpx)g(κ)) (Jensen’s inequality)

≥ φ(g(κ)(2Fpx(κ)− 1))

≥ φ(0) + (g(κ)(2Fpx(κ)− 1))φ′(0)

≥ φ(0) ,

where the last inequality comes from the fact that if κ 6∈ Q1/2(px), then g(κ) an (2Fpx(κ)−1)

must differ in sign. Hence,

1

2

∫ u

q
(φ(0)− 2C∗1/2(Fpx(κ))dκ ≤ 1

2

∫ u

q
(2C1/2(g(κ), Fpx(κ))− 2C∗1/2(Fpx(κ))dκ

≤ 1

2

∫ u

q
(2C1/2(g(κ), Fpx(κ))− 2C∗1/2(Fpx(κ))dκ

= 2 (EY∼px [ψφ,α(Y, g)]−EY∼px [ψφ,α(Y, g∗)]) ,

where g∗ is a minimizer of ψφ,α. Because the above holds for all x ∈ X, we see that it holds

over the expectation by monotonicity of expectation. Hence, we can write:

erψαD [f ]− erψα,∗D ≤ ξ
(

er
ψφ,1/2
D [f ]− er

ψφ,1/2,∗
D

)
.

Combining this with Theorem 8, we get the desired bound

||dist(predw ◦ f,Q1/2)||Lr(DX) ≤ 21−1/qq1/q||τ−1||Lp(DX)ξ
(

er
ψφ,1/2
D [f ]− er

ψφ,1/2,∗
D

)1/q
.

6The reason that this argument does not generalize to the α-quantile is because this symmetry is required
for this specific regret bound.
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4.3.1 Reduction Approach via Riemann Sums

Now, suppose that for all x ∈ X , Y has support on [0, 1], as in [19]. Similar to the context

in Steinwart et al [31], so long as the conditional support of Y is bounded we can generally

normalize our data such that this statement holds. We may then consider a relaxation of

the infinite thresholds surrogate, which discretizes the integral:

Definition 20 (n-Finite Threshold Surrogate). The n-Finite Threshold Surrogate, ψn,φ,α :

Y × Rn+1 → R+ is defined as the following summation:

ψn,φ,α(y,v) = α

y∑
t=0

1

n
φ(−vt) + (1− α)

n∑
t=y+1

1

n
φ(vt) , (4)

Remark. If the prediction space is restricted to A ⊆ Rn+1, defined:

A = {v | v0 ≤ v1 ≤ · · · ≤ vn} .

Then as n → ∞, the n-Finite Threshold Surrogate converges to the Infinite Threshold

surrogate.

We claim that, from the loss minimization perspective, Langford et al are effectively mini-

mizing the n-Finite Threshold Surrogate:

Proposition 4. If a binary classification algorithm is use in Quanting-Train which min-

imizes a margin loss φ, then Quanting-Train minimizes the n-Finite Threshold Surrogate

Proof. Consider the generalization error of ψn,φ,α:

EY∼p[ψn,φ,α(y,v)] =

∫ 1

0

α y∑
t=0

1

n
φ(−vt) + (1− α)

n∑
t=y+1

1

n
φ(vt)

 dF (y)

= α

y∑
t=0

∫ 1

0

1

n
φ(−vt)dF (y) + (1− α)

n∑
t=y+1

∫ 1

0

1

n
φ(vt)dF (y) .
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Here, we note that for an arbitrary but particular t, when y = t the first summation

contributes to the loss with probability 1−F (t), and the second contributes to the loss with

probability F (t). Hence,

EY∼p[ψn,φ,α(y,v)] =
n∑
t=0

α(1− F (t))φ(−vt) + (1− α)F (t)φ(vt) .

To minimize this term, one can simply minimize each term of the summand, as the sum

is separable. This is exactly what would be done by Quanting-Train when it performs

the importance-weighted binary classification, if the classification is done using a margin

loss.

Remark. It is worth noting that Langford et al [19] use a distinctly different pred function

in Quanting-Test than predw as defined in Theorem 4. It appears to be close to predw,

as one would expect that if the minimization was done over A as opposed to Rn+1, the

increasing function would intersect 0 at precisely Et∼U(0,1)[ct(x)]— this is exactly the point

at which the margin would go from being negative to becoming positive. However, because

Langford et al. do not enforce this strictly increasing assumption, their effective pred

function is markedly different from predw.
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5 Application to Multiclass Classification

We turn our attention to the application of multiclass classification, which is a commonly

studied problem in machine learning [7, 8, 9, 12, 20, 22, 1]. Through the use of quantiles, and

coarse probability estimation, we present results for traditionally “difficult” losses, namely

the 0-1 loss and the 0-1 loss with a reject option. Here again, we reuse notation from

previous sections to reflect the similarity between these results and previous results.

5.1 Setting

In the problem of multiclass classification, there is an instance space X , a finite label

space Y = [n] = {1, . . . , n}, and a finite prediction space Ŷ = [k] = {1, . . . , k} (usu-

ally k = n, although that is not always the case.) We are given training examples

S =
(
(X1, Y1), (X2, Y2), . . . , (Xm, Ym)

)
drawn i.i.d. from a distribution D on X × Y.

Given the training set S, the goal is to generate a function h : X → Y, which performs

well according to some loss function ` : Y × Ŷ → R+. Specifically, we wish to minimize

the `-generalization error of h, which we recall is definied er`D[h] = E(X,Y )∼D [`(Y, h(X))].

Let er`,∗D = inf
ĥ:X→Y E(X,Y )∼D[`(Y, ĥ(X))] be the minimum possible error achievable by any

classifier, i.e. the Bayes error. Then, we wish to design an algorithm that, given the random

training sample S, generates a classifier hm : X → Y such that er`D[hm]→P er`,∗D .

In other words, the algorithm should have the property:

∀ε > 0, P
(∣∣∣er`D[hm]− er`,∗D

∣∣∣ > ε
)
→ 0 (m→∞)

Such algorithms are defined as consistent with respect to `. Unfortunately, it can be shown

that finding such a classifier h directly is NP-Hard [10].

Instead, a common approach is to instead minimize a convex surrogate loss ψ : Y×C → R+,

where C ⊆ Rd (for some suitable number d) is the surrogate prediction space. Then, as
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opposed to learning h directly, one can instead perform some convex optimization task on

the sample S to learn a function fm : X → C, as well as some suitable mapping pred :

C → Ŷ to convert from the surrogate prediction space to the original prediction space.

We can similarly define a notion of algorithms consistent with respect to ψ, for which

erψD[fm] →P erψ,∗D . In order to determine whether minimization of the surrogate loss leads

to useful minimization of the original loss, we define a notion of calibration. Because we

are dealing specifically in a discrete space now, define ∆n = {p ∈ Rn+|
∑

i pi = 1} to be the

probability simplex in n dimensions.

5.2 Review of Literature

We present several results from the multiclass classification literature. First, we provide

results showing why specific loss functions may be “difficult” to construct algorithms for.

Then, we present a general approach, coarse probability estimation, as a way to work around

such “difficult” loss functions.

5.2.1 Convex Calibration Dimension

One goal in designing efficient algorithms for multiclass classification for specific losses

would be to minimize the dimension d of the prediction space, so that there space of pos-

sible learned functions is smaller and thus the optimization problem becomes tractable.

Ramaswamy and Agarwal [24] quantify exactly this with their definition of the convex

calibration dimension:

Definition 21 (Convex Calibration Dimension [24]). Consider a loss ` : Y ×Ŷ → R+. The

convex calibration dimension (CC Dimension) of the loss is:

CCDim(`) , min{d ∈ Z+ : ∃ a convex set C ⊆ Rd and a convex surrogate loss

ψ : Y × C → R+ that is `-calibrated.} .
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Here, `-calibrated is the same as in Definition 13. Using proper scoring rules, one can

estimate conditional class probabilities for n − 1 classes to derive a consistent classifier

which shows CCDim(`) ≤ n − 1 for any loss on n classes [1, 24]. Many loss functions

admit surrogate losses with significantly lower dimensions for prediction spaces, such as the

ordinal regression loss, which uses a surrogate prediction space in one dimension as opposed

to n− 1 [23].

Of importance in this paper are lower bounds on the convex calibration dimension of specific

losses. In particular, we note the following result for the 0-1 loss, `0-1(y, ŷ) = 1(y 6= ŷ).

Theorem 11 (Convex calibration dimension of `0-1 [24]). Consider the 0-1 loss `0-1(y, ŷ)

defined on a label and prediction space containing n classes. Then,

CCDim(`0-1) ≥ n− 1

This, along with the upper bound using conditional class probabilities implies CCDim(`0-1) =

n− 1, which is not a very promising result for multiclass classification under the 0-1 loss if

the number of classes is large.

5.2.2 Coarse Probability Estimation

In order to work around some of the issues that occur when the Convex Calibration Di-

mension of a loss function is high, we introduce the idea of coarse probability estimation.

In particular, we learn a vector-valued property of quantiles, and then use this vector to

approximate which class has highest probability. In particular, for an integer s, we elicit

the vector valued property

Γ(p) = Q1/s(p)× · · · ×Q(s−1)/s(p) ∈ Is−1 .

This is demonstrated in the following example:
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Figure 1: Quantiles overlain on cumulative distribution function of labels where Y ∼ p.

Example 7 (Coarse Probability Estimation from Quantiles). Consider a probability distri-

bution on n = 4 classes, p = [0.1, 0.15, 0.5, 0.25]T ∈ ∆4, and note the diagram of the CDF

presented in Figure 1, in which the 1
5 ,

2
5 ,

3
5 and 4

5 quantiles are shown. From the diagram,

we have (
Q 1

5
(p), Q 2

5
(p), Q 3

5
(p), Q 4

5
(p)
)

= (2, 3, 3, 4)

From these data points, we can infer that if Y is drawn according to p, then

P(Y = 1) ∈ [0, 0.2],P(Y = 2) ∈ [0, 0.4],P(Y = 3) ∈ [0.2, 0.6], and P(Y = 4) ∈ [0, 0.4].

5.3 Theoretical Results

In this section, we present several results detailing how quantile elicitation can be applied

to multiclass classification. We begin by formalizing a framework that quantifies what we

refer to as “approximate consistency,” and then go on to discuss applications to two known

losses.
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5.3.1 Approximately Consistent Loss Functions

We begin with defining unavoidable error, which quantifies the extent to which an approach

can have error within an optimal range:

Definition 22 (Unavoidable Error). Consider a loss function ` : [n]× [k]→ R+, a surrogate

loss ψ : [n] × C → R+ with a mapping pred : C → [k]. Consider an algorithm that learns

functions fm from a training sample S of m pairs (Xi, Yi) drawn i.i.d. from some distribution

D. Then, we define the unavoidable error er`U of the pair (ψ,pred) to be:

er`U (ψ,pred) = inf
{
ε | ε ≥ 0 and ∀D over X × Y, ∃δ ≤ ε s.t.

erψD[fm]− erψ,∗D →P 0 =⇒ er`D[pred ◦ fm]− er`,∗D →
P δ
}
.

Note that, if (ψ,pred) is (`,∆n) calibrated, then er`U (ψ,pred) = 0 by Theorem 6. If

er`U (ψ,pred) > 0, we call the pair (ψ,pred) an approximate surrogate loss. Moreover, to

compare surrogate prediction spaces of different dimensions, we define:

Definition 23. d-Unavoidable Error Consider a loss function ` : [n] × [k] → R+, and let

Ψ(d) be the set of all pairs (ψ,pred) such that ψ : [n] × C → R+ and pred : C → [k] with

C ⊆ Rd Then, the d-unavoidable error er`U,d of ` is:

er`U,d = inf
(ψ,pred)∈Ψ(d)

er`U (ψ,pred)

This d-unavoidable error is simply the best possible unavoidable error of any surrogate loss

with surrogate prediction space C ⊆ Rd. This leads us to the following chain of inequalities

similar to MAP estimation:

Proposition 5 (Surrogate Loss “Hierarchy”). For any loss ` : [n]× [k]→ R+, we have:

er`U,1 ≥ er`U,2 ≥ · · · ≥ er`U,n−1 = 0 .
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If ` has convex calibration dimension d′, then:

er`U,d′ = 0 .

Proof. First, note that the final equality comes directly from [25], as we can always use n−1

proper loss functions to generate class probability estimates to produce a (`,∆n)-consistent

surrogate loss.

Next, assume towards contradiction that for some integer r ≥ 1, we have:

er`U,r+1 > er`U,r .

In other words, er`U,r+1 = er`U,r + δ for some value δ > 0.

By the definition of infimum, we know that for any ε > 0, there exists some surrogate loss

pair (ψ,pred) such that er`U,r > er`U (ψ,pred)− ε. In particular, there is some pair (ψ,pred)

for which this holds when ε = δ
2 < δ. Denote this pair (ψδ/2,predδ/2).

Next, we append a “dummy dimension” on (ψδ/2, predδ/2). Let ψδ/2 : Y × C → R+ and

predδ/2 : C → [k]. Then, we can define the following surrogate loss with r + 1 dimensional

surrogate space - let u ∈ C ⊆ Rr, x ∈ R, so that (u, x) is an element in an R dimensional

space:

ψ′δ/2(y, (u, x)) = ψδ/2(u)

pred′δ/2((u, x)) = predδ/2(u)

Since x is not used by these functions, the optimal classifier from the pair (ψ′δ/2, pred′δ/2)

behaves exactly as that of the pair (ψδ/2, predδ/2). However, this implies there exists a

surrogate loss with an r+1-dimensional surrogate space which has unavoidable error er`U,r+

δ/2 < er`U,r + δ, contradicting the assumption that er`U,r+1 = er`U,r + δ.
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Finally, we show that if ` has convex calibration dimension d′, then:

er`U,d′ = 0

Because, by definition of convex calibration dimension, there exists a surrogate loss function

with a d′-dimensional surrogate space that is consistent with `, and thus this surrogate loss

function will have unavoidable error 0, the lowest possible unavoidable error.

Thus, we have quantified a relaxation hierarchy for surrogate risk minimization analogous to

that of linear programming hierarchies in MAP estimation. In the next section, we provide

upper bounds on the d-unavoidable error of the 0-1 loss.

5.3.2 Multiclass Classification with the 0-1 Loss

We present a variation on the quantile elicitation ideas presented by Agarwal and Agarwal

[1]. Using ψφ,α and predw, we may elicit the α-quantile(s) of the conditional distribution

of labels given an instance. We may then let ψc,φ be the loss which elicits the quantiles

1
c ,

2
c , . . . ,

c−1
c . Moreover, once the values u = (u1, . . . , uc−1), which represent the values of

the quantiles, are learned, we define Ny(u) as the number of times that the value y appears

in u. Then, our function predc is as follows:

predc(u) = argmaxy′∈[n]Ny′(u)

With this algorithm, we can show the following result:

Theorem 12. Let `0-1 be the 0-1 multiclass loss, `0-1(y, ŷ) = 1(y 6= ŷ). Then,

er`0-1U,c−1 ≤
2

c
.

Proof. We must simply show that a Bayes optimal classifier with respect to ψc has regret at
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most 2
c with respect to `0-1. That is, if we let f∗ be a Bayes optimal classifier with respect

to ψc, we wish to show that for any distribution D, we have er`0-1D [predc ◦ f∗]− er`0-1,∗D ≤ 2
c .

Additionally, let h∗ be a Bayes optimal classifier with respect to `0-1.

Next, we note:

er`0-1D [predc ◦ f∗]− er`0-1,∗D = E(X,Y )∼D [`0-1(Y, predc(f
∗(X)))− `0-1(Y, h∗(X))]

= EX

[
EY |X=x [`0-1(Y, predc(f

∗(x)))− `0-1(Y, h∗(x))]
]
.

Hence, it is sufficient to show EY |X=x [`0-1(Y,predc(f
∗(x)))− `0-1(Y, h∗(x))] ≤ 2

c

(
n−1
n

)
, as

er`0-1D [predc ◦ f∗] − er`0-1,∗D is a weighted sum of the inner term (which is also known as the

inner risk).

Thus, more generally, since Y is a random variable taking values 1 through n, if we show

that for all p ∈ ∆n,7 if uc represents the quantiles 1
c , . . . ,

c−1
c , and y∗ = argmaxy∈[n] py,

we have EY∼p [`0-1(Y, predc(u))− `0-1(Y, y∗)] ≤ 2
c , we will have shown the claim, as the

conditional distribution of Y given x ∈ X is will lie in ∆n, regardless of the choice of D,

and the functions f∗ and h∗ will output uc and y∗ by definition as Bayes optimal classifiers

[1].

Case 1: p ∈ {q ∈ ∆n | ∃y s.t. qy > qy′ +
2
c ∀y

′ 6= y}

This case has actually been shown by Agarwal and Agarwal [1], as we know that

quantile elicitation method to be calibrated with respect to `0-1 under this “low-

noise” condition, and our randomized predc classifier will always only output 1

class as having the maximum probability, making the two algorithms equivalent

in this case. Thus,

EY∼p [`0-1(Y,predc(uc))− `0-1(Y, y∗)] = EY∼p [`0-1(Y, y∗)− `0-1(Y, ŷ)]

= 0 ≤ 2

c
,

7For notation, if p ∈ ∆n, then let py be the probability of the outcome y.
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as desired.

Case 2: p 6∈ {q ∈ ∆n | ∃y s.t. qy > qy′ +
2
c ∀y

′ 6= y}

There are two subcases here:

Case 2a: p ∈ relint(∆n)

Let us consider the set A = argmaxy′∈[n]Ny′(u). Consider the value

py∗ , as well as the set B = {y|py > py∗ − 2
c}. We claim that A ⊆ B.

Suppose not, and there exists some class y′ such that py < py∗ − 2
c .

Then, it must be the case Ny′(u) ≤ Ny(u)−1, as we measure quantiles

in intervals of 1
c . Thus, the algorithm will have the following regret:

EY∼p [`0-1(Y, predc(uc))− `0-1(Y, ŷ)] = EY∼p, predc [`0-1(Y,predc(uc))]

− (1− py∗)

≤
(

1−
(
py∗ −

2

c

))
− (1− py∗)

=
2

c
,

as desired.

Case 2b: p 6∈ relint(∆n)

If maxNy(u) ≥ 2, then the argument is the same as that above, as

no class with probability 0 will be seen in more than one quantile.

Otherwise, if maxNy(u) = 1, it is possible that we select a class with

0 probability. However, if maxNy(u) = 1, then py∗ ≤ 2
c , and so no
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matter what class is selected, we will have:

EY∼p [`0-1(Y, predc(uc))− `0-1(Y, ŷ)] ≤ EY∼p, predc [`0-1(Y,predc(uc))]−
(

1− 2

c

)
≤ (1− 0)−

(
1− 2

c

)
=

2

c
,

as desired.

Thus, for all possible conditional distributions of the label, we have

EY∼p [`0-1(Y, predc(uc))− `0-1(Y, ŷ)] ≤ 2

c
,

showing that er`0-1U (ψc, predc) ≤ 2
c , and therefore

er`0-1U,c−1 ≤ er`0-1U (ψc, predc) ≤
2

c
,

as desired.

In particular, if we let s = dlg ne as in [1], then this error is goes to 0 as n increases, which

is desirable in the case of multiclass classification when n is large.

5.3.3 Multiclass Classification with a Reject Option

Now, we turn our attention to the loss `β : [n]× [n+ 1], defined as follows:

`β(y, ŷ) =


1(y = ŷ) ŷ ∈ [n]

β ŷ = n+ 1

.

This loss function has been studied, particularly in the cases where β ≤ 1
2 , for which

surrogate losses with prediction space in O(lg n) dimensions are known [26]. In particular,
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it is noted in Ramaswamy et al [26] that classification when β > 1
2 is thought to be in some

sense hard due to the form of the optimal classifier. Thus, it is a natural loss for us to try

to develop an approximate surrogate loss.

Let us use ψ2d 1
1−β e

to elicit quantiles 1
2d 1

1−β e
, . . . ,

2d 1
1−β e−1

2d 1
1−β e

. Moreover, let us use the following

function predβ(u):

predβ(u) =


y ∈ argmaxy′∈[n]Ny′(u) maxy′∈[n]Ny′(u) ≥ 2

n+ 1 ∀y′ ∈ [n], Ny′(u) ≤ 1

.

Then, we have the following:

Theorem 13. For the multiclass loss with a reject option β ≥ 1
2 ,

er`
β

U,2d 1
1−β e−1

≤ 1

d 1
1−β e

.

Proof. Here, we wish to show that

er`
β

U,2d 1
1−β e−1

≤ 1

d 1
1−β e

.

For simplicity, let us write c = 2d 1
1−β e, so that we can write the problem statement as:

er`
β

U,c−1 ≤
2

c
.

This is similar to proposition 3, and as such we approach the problem in a similar fashion.

As was done before, it is sufficient to show

EY∼p

[
`β(Y,predc(uc))− `β(Y, y∗)

]
≤ 2

c
.
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Where uc are again the 1
c , . . . ,

c−1
c quantiles, and now we let

y∗ =


argmaxy′∈[n]py′ maxy′∈[n] py′ > 1− β

n+ 1 o.w.

.

We observe to following cases:

Case 1: p ∈ {q ∈ ∆n | maxy′ py′ 6∈ [1− β − 1
c , 1− β + 1

c ]}

Note that c = 2d 1
1−β e, and so if the above case occurs, then if the maximum

class probability lies below 1−β− 1
c ≤

1
2(1−β) , it must be the case that Ny(u) ≤ 1

for all i, and therefore predc(u) = n+ 1, which is optimal resulting in an inner

risk of 0.

On the other hand, if maxy′ py′ ≥ 3
2(1−β) , it must be the case that maxyNy(u) ≥

2, as at least one class must cross two quantiles. Because it is possible that

more than one quantile has probability at least 3
2(1−β) , we see that, because the

reject option is automatically not considered, all of the remaining cases for class

probabilities are encompassed in the 0-1 loss proof of proposition 3. As such,

the proofs are omitted.

Case 2: p 6∈ {q ∈ ∆n | maxy′ py′ 6∈ [1− β − 1
c , 1− β + 1

c ]}

In this case, maxy′ py′ ∈ [1 − β − 1
c , 1 − β + 1

c ], and there are two cases: If

Ny(u) ≤ 1 for all y, then the algorithm will choose predc(u) = n+ 1, which has:

EY∼p

[
`β(Y, predc(uc))− `β(Y, ŷ)

]
= EY∼p

[
`β(Y, n+ 1)− `β(Y, ŷ)

]
≤ 1− β −

(
1− β − 1

c

)
=

1

c
.

Otherwise, if Ny(u) ≥ 2 for some y (at least one of which is selected by the

algorithm), it must be the case that py ≥ 1
c , and so the regret is at most 2

c , as
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we have:

EY∼p

[
`β(Y, predc(uc))− `β(Y, ŷ)

]
≤
(

1− 1

c

)
−EY∼p

[
`β(Y, ŷ)

]
≤
(

1− β +
1

c

)
−
(

1− β − 1

c

)
=

2

c
.

Thus, in all cases, the inner risk is at most 2
c , implying that for the 0-1 loss with a reject

option, the unavoidable risk is at most 2
c .

Through this application of quantiles, we present a constant dimensional surrogate for

the 0-1 multiclass loss with a reject option - however, the unavoidable error is potentially

quite high depending on the value of β, and again we see a tradeoff between accuracy and

computational complexity in terms of the number of quantiles needed and the unavoidable

error bound. Note that, this problem is only interesting if β < n−1
n , as otherwise the reject

option is never optimal to use - this realization bounds the computational complexity of

the task as needing to learn O(n) quantiles. Moreover, the unavoidable error bound is not

different than that of the original 0-1 loss, so we are not fully utilizing the effect of the reject

option (although, as can be seen in the proof, the reject option is still partially utilized in

the analysis and can be developed into a tighter bound).

More generally, as a framework to generate quantile based approximation surrogate losses

to other loss functions, one can first determine at what probabilities an optimal classifier

would need to threshold, and then use the coarse probability estimates to observe this error

within a margin. The margin of error can then be used to provide an upper bound on the

unavoidable error.

5.4 Experimental Results

We now present some experimental results regarding the effectiveness of quantile elicitation

methods on multiclass classification.
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5.4.1 Synthetic Experiments

Using code derived from Pedregosa et al. [23], we were able to run multiple experiments on

synthetic data sets, showing the effectiveness of quantile regression for multiclass classifica-

tion.

Figure 2: Visualization of Synthetic Data, α = 2, n = 4

We performed the task of multiclass classification on two types of synthetic data sets with

varying number of classes. For each data set, the instance X = R2 was generated on the

line y = x, with Gaussian noise added. Additionally, each class y ∈ [n] was assigned a point

on the line cy, so that the conditional distribution was defined according to P(Y = y|x) ∝

(||x− cy||2)−α. For one type of data set, we set α = 1
2 resulting in very noisy data, and for

the other type of data set, for example as shown in Figure 3, we set α = 2.

To learn quantiles, we minimized ψφ,α using φ as the logistic loss, and minimized over

step functions with n − 1 steps - with this approach, the integral form of ψφ,α becomes a

sum which is tractable for optimization using modified code from [23]. In each trial, we

varied the number of classes in the data set, learning 3dlg2 ne − 1 quantiles over 10, 000

data points and testing on another 10,000 data points generated with the same distribution

independently. For comparison, we used the sklearn implementation of logistic regression,

which also uses linear classifiers. Our results are summarized in the following table:
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Data Set Algorithm n = 4 n = 8 n = 16 n = 32 n = 64

α = 0.5 Quantile Elicitation 0.6337 0.7731 0.9076 0.9515 0.9738

α = 0.5 Logistic Regression 0.5896 0.7595 0.8746 0.9399 0.9713

α = 2 Quantile Elicitation 0.2014 0.2404 0.3697 0.5669 0.7589

α = 2 Logistic Regression 0.1963 0.2691 0.4588 0.7687 0.9024

Table 2: 0-1 Loss of Algorithms on Synthetic Multiclass Data Sets, varying number of
classes n

We see that, for the noisy data set, the performance of the algorithms is comparable, with

both having fairly poor accuracy. In contrast, the quantile elicitation algorithm outperforms

logistic regression in the less noisy data set.

5.4.2 Experiments on Real World Datasets

We also used the quantile elicitation method of section 5.3.2 to provide experimental results

on real world data. In particular, we run the method on the MNIST dataset and the

CIFAR-10 dataset. In each dataset, the features provided are that of the image, and the

classification task is to predict one of 10 classes.

For the MNIST dataset, we trained two neural networks. The first network had two con-

volutional layers followed by two linear layers, with an output layer with 5 nodes, each

measuring a quantile in multiples of 1/6. This neural network was trained with the loss

on each node as the α-pinball loss for the corresponding quantile. We then compared the

result of this neural network to that of a second neural network with the same structure,

but with a softmax layer as the output layer instead of only 5 nodes. Each neural network

was trained This allows us to compare the approximation of our method to a close method

that is commonly used in multiclass classification and has a similar function class.

Similarly, for the CIFAR-10 dataset, we again trained three neural networks. Again, the

first network had two convolutional layers followed by two linear layers, with an output

layer with 5 nodes, each measuring a quantile in multiples of 1/6 using the α-pinball loss.

This was again compared to a second neural network with the same structure but a softmax
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Dataset Algorithm 0-1 Loss

MNIST Quantile Elicitation 0.1597

MNIST Softmax Classification 0.0135

CIFAR10 Quantile Elicitation 0.5960

CIFAR10 Softmax Classification 0.4217

Table 3: 0-1 Loss for real world dataset experiments

layer as the final layer. The results of both experiments are summarized in Table 3.

In both cases, we see that the algorithm based on quantile elicitation has a higher loss than

the softmax algorithm, as it is only “approximately” consistent.

6 Conclusions

In this thesis, we have developed and discussed applications of the infinite threshold scoring

rule for quantile elicitation. This scoring rule allows for the development of a quantile

elicitation algorithm simply by having a binary classification algorithm, and hence allows

for the implementation of many new scoring rules for quantile elicitation. We show that

the scoring rule can be used for conditional quantile elicitation, and provide experimental

evidence showing that it can result in efficient algorithms particularly for median elicitation.

We then provide an application in multiclass classification, where we are able to develop a

theory of approximately consistent surrogate losses, and use quantile elicitation as a means

to perform multiclass classification when the number of labels is large.
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